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DNA Methylome of Familial Breast Cancer Identifies
Distinct Profiles Defined by Mutation Status

James M. Flanagan,1,* Sibylle Cocciardi,2 Nic Waddell,2 Cameron N. Johnstone,2 Anna Marsh,2

Stephen Henderson,1 Peter Simpson,3 Leonard da Silva,3 kConFab Investigators,4 Kumkum Khanna,5

Sunil Lakhani,3 Chris Boshoff,1 and Georgia Chenevix-Trench2

It is now understood that epigenetic alterations occur frequently in sporadic breast carcinogenesis, but little is known about the epige-

netic alterations associated with familial breast tumors. We performed genome-wide DNA-methylation profiling on familial breast

cancers (n ¼ 33) to identify patterns of methylation specific to the different mutation groups (BRCA1, BRCA2, and BRCAx) or intrinsic

subtypes of breast cancer (basal, luminal A, luminal B, HER2-amplified, and normal-like). We used methylated DNA immunoprecipita-

tion (MeDIP) on Affymetrix promoter chips to interrogate methylation profiles across 25,500 distinct transcripts. Using a support vector

machine classification algorithm, we demonstrated that genome-wide methylation profiles predicted tumor mutation status with esti-

mated error rates of 19% (BRCA1), 31% (BRCA2), and 36% (BRCAx) but did not accurately predict the intrinsic subtypes defined by gene

expression. Furthermore, using unsupervised hierarchical clustering, we identified a distinct subgroup of BRCAx tumors defined by

methylation profiles. We validated these findings in the 33 tumors in the test set, as well as in an independent validation set of 47

formalin-fixed, paraffin-embedded familial breast tumors, by pyrosequencing and Epityper. Finally, gene-expression profiling and

SNP CGH array previously performed on the same samples allowed full integration of methylation, gene-expression, and copy-number

data sets, revealing frequent hypermethylation of genes that also displayed loss of heterozygosity, as well as of genes that show copy-

number gains, providing a potential mechanism for expression dosage compensation. Together, these data show that methylation

profiles for familial breast cancers are defined by the mutation status and are distinct from the intrinsic subtypes.
Introduction

Breast cancer (MIM 11448) is one of the most common

cancers in the Western world, affecting one in ten women

during their lifetime.1 Mutations in the known breast can-

cer susceptibility genes, including BRCA1 (MIM 113705)

and BRCA2 (MIM 600185), account for approximately

only 25% of familial breast tumors.2 Expression profiling

has shown that breast cancers fall into five intrinsic sub-

types: luminal A, luminal B, HER2-amplified, basal, and

normal-like.3 Most BRCA1-related tumors are of the basal

subtype.4 However, we have shown that there is consider-

able heterogeneity among familial breast tumors, with

almost all five subtypes being found in each mutation

class.5

Epigenetic processes include DNA methylation, histone

modifications, chromatin structure, and noncoding RNA-

mediated regulation of gene expression.6 Historically,

DNA-methylation studies in cancer have revealed both

hypermethylation of promoter CpG islands and hypome-

thylation of repetitive DNA sequences.7 There are over

90 candidate genes reported throughout the literature as

promoter hypermethylated in breast cancers (Pubmeth

web resource). More recently, DNA-methylation alter-

ations have been studied in breast tumor tissue on a

genome-wide scale, revealing hypermethylated as well as

hypomethylated loci, compared to matched adjacent
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tissues.8,9 Novak et. al.9 interrogated 16 unselected breast

tumors, five normal breast specimens, and several breast

cancer cell lines with Affymetrix promoter arrays and iden-

tified 2033 hypermethylated and 1473 hypomethylated

regions in the tumors, compared to the whole sections

of normal breast. Most of the differentially methylated

regions were recurrent, 90% of them occurring in at least

five tumors. Both the hyper- and hypomethylated regions

were also clustered in regions of long-range epigenetic

silencing (LRES)10 and were frequently found at gene

family clusters, including the proto-cadherin gene cluster

on chromosome 5.9,11 Ordway et al.8 evaluated nine infil-

trating ductal breast carcinomas and matching normal

tissue with custom promoter-methylation microarrays

and identified 220 loci that distinguished tumor from

normal tissue. Five of these loci were validated in a series

of 230 clinical samples, and some showed considerable

promise as biomarkers.8 Promoter-tiling arrays have also

been used to evaluate a cell-line model of breast cancer

metastasis and have identified differential methylation in

genes involved in epithelial-mesenchymal transition and

tumor cell migration.12

One previous study suggested that hereditary breast

cancers have methylation similar to that of sporadic

tumors in ten candidate genes.13 However, a more recent

study investigated 11 candidate genes (five overlapping

with the previous study) and suggested that BRCA1-related
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breast cancers have less methylation than sporadic breast

cancers.14 To our knowledge, no study has yet performed

genome-wide methylation analysis on familial breast

cancers or looked for methylation differences between

familial breast tumor mutation classes. Therefore, we

sought to use genome-wide DNA-methylation profiling

of familial breast cancer cases to identify patterns of meth-

ylation specific to the different mutation groups (BRCA1,

BRCA2, non-BRCA1/2 [BRCAx]), which may provide clini-

cally relevant diagnostic value. The same tumor DNA

samples have been analyzed by gene-expression profiling

and copy-number analysis,5 allowing for the first time

a comprehensive integrated genomic analysis of familial

breast tumors.
Material and Methods

Patient Material
For DNA-methylation microarray analysis, we analyzed 33 fresh

frozen familial tumors, including BRCA1 (n ¼ 11), BRCA2 (n ¼ 8),

and BRCAx (n ¼ 14) tumors. Characteristics of these tumors have

been described in more detail elsewhere.5 The tumors were

collected by the Kathleen Cunningham Foundation for Research

into Breast Cancer (kConFab), a consortium which ascertains

multiple-case breast cancer families.15 Ethical approvals for

recruitment were obtained from the institutional review boards

or ethics committees at all of the sites. Written informed consent

was obtained from each participant. The BRCAx tumors came

from women from high-risk families ascertained by kConFab,

and in each case the tumor donor had undergone full BRCA1/2

mutation testing by full sequencing and multiplex ligation-

dependant probe amplification. The additional validation set of

formalin-fixed paraffin embedded (FFPE) tumors consisted of

BRCA1 (n ¼ 14), BRCA2 (n ¼ 13), and BRCAx (n ¼ 20) tumors

from kConFab. All specimens were evaluated by a pathologist for

percentage of neoplasia prior to DNA isolation and were selected

for DNA analyses if they were > 75% tumor after needle macrodis-

section. DNA was extracted by standard salt extraction and

phenol-chloroform protocol. Estrogen receptor (ESR1 [MIM

133430]), progesterone receptor (PGR [MIM 607311]), and HER2

(ERBB2 [MIM 164870]) status, grade, and tumor type were avail-

able from clinical records (Table S1, available online).

CGI Methylation Profiling
We performed microarray-based DNA-methylation analysis by

using methylated DNA immunoprecipitation (MeDIP) on high-

density Affymetrix tiling microarrays.16 MeDIP was performed

with the Diagenode MeDIP kit according to the manufacturer’s

protocol (Diagenode, Leige, Belgium). The Affymetrix GeneChip

Human Promoter 1.0R Array comprises over 4.6 million probes

tiled at an average resolution of 35 bp, covering approximately

10 kb around 25,500 transcription start sites (Affymetrix, High

Wycombe, UK). We performed triplicate MeDIP reactions for

each tumor and amplified them via whole-genome amplification

with Genomiphi V2 according to the manufacturer’s protocol

(GE Healthcare). The triplicates were then pooled for one MeDIP

array and one input array per sample. The arrays were hybridized

with the use of Affymetrix hybridization reagents, with an Affy-

metrix hybridization oven, and stained and washed with the use

of the Fluidics Station 450 (Affymetrix, High Wycombe, UK).
The Ameri
Arrays were scanned with the GeneChip Scanner 3000 7G with

autoloader. Raw data were extracted with the GeneChip Operating

System (GCOS) software from Affymetrix.
qPCR Validation
Quality control of the MeDIP samples prior to microarray analysis

was performed via quantitative PCR (qPCR)-based analysis of

enrichment with the use of primers to ‘‘spiked in’’ and inherent

controls provided with the Diagenode MeDIP kit. These included

methylated sequence controls (human Alpha satellite and in vitro

methylated Arabidopsis DNA) and unmethylated controls (human

GAPDH promoter [MIM 138400] and unmethylated Arabidopsis

DNA). qPCR was performed with an Eppendorf realtime PCR

machine, and the reaction mix contained 13 SYBR green master

mix (Applied Biosystems, Foster City, USA) and 0.5 mM each of

forward and reverse primers in a volume of 30 mL. PCR cycling

consisted of 95�C for 10 min, then 40 cycles of 95�C for 30 s,

60�C for 60 s, followed by a meltcurve analysis.
Bisulphite Sequencing
We have used both pyrosequencing and Epityper-based analysis

for validation of DNA-methylation differences. Epityper was

used to cover long segments of DNA, covering up to 50 CpG sites

per gene. Pyrosequencing was used for shorter assays over higher-

density CpG regions (4–9 CpG sites). All primers used in this study

are presented in Table S2. DNA samples were bisulphite converted

with the EZ-96 DNA Methylation-Gold kit according to the manu-

facturer’s protocol (Zymo Research, Orange, CA).

Pyrosequencing

All pyrosequencing assays were designed with the PyroQ assay-

design software. A common tag was placed on either the forward

or the reverse primer (depending on the strand to be sequenced),

and a common universal biotinylated primer was used for all reac-

tions as previously described.17 PCR cycling conditions were per-

formed as previously described.18 All assays were optimized with

fully methylated gDNA (100%) (Zymo Research) compared to

unmethylated gDNA (0%, whole-genome amplified DNA [GE

Healthcare]). All products were confirmed to be single bands by

agarose gel electrophoresis. Methylation values were calculated

as an average of all CpG sites within each assay as determined

by the Pyro Q-CpG software (Biotage, Uppsala, Sweden).

Epityper

Bisulphite-treated DNA (1 mL) was used in a 5 ml PCR reaction with

the use of 0.2 mM0T7-promoter-tagged reverse primer, 0.2 mM

10-mer-tagged forward primer, 1.5 mM MgCl2, 200 mM dNTP

mix, 13 FastStart Taq DNA Polymerase PCR Buffer (Roche Applied

Science, Penzberg, Germany), and 0.4 U FastStart Taq DNA poly-

merase (Roche Applied Science, Penzberg, Germany). The PCR

cycling conditions were 4 min at 94�C, followed by 9 cycles of

94�C for 20 s, 72�C to 62�C (�1�C per cycle) for 30 s, and 72�C

for 1 min, followed by an additional 36 cycles at 62�C annealing

temperature. Random products were visualized on a 1% agarose

gel to confirm single-band amplification. After Shrimp Alkaline

Phosphatase (SAP) treatment, PCR products were subjected to T

cleavage transcription and RNase A cleavage according to the Epi-

TYPER Application Guide (Sequenom, San Diego, CA), spotted

onto a SpectroCHIP array, and analyzed with the MassARRAY

Compact System MALDI-TOF mass spectrometer (Sequenom,

San Diego, CA). Data were analyzed with EpiTYPER software

(Sequenom, San Diego, CA). Primers were designed with EpiDe-

signer (Sequenom, San Diego, CA).
can Journal of Human Genetics 86, 420–433, March 12, 2010 421
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Figure 1. DNA-Methylation Profiles of BRCA1, BRCA2, and BRCAx Tumors
(A) Percentage of genes that pass the FDR-corrected p value cutoff of p < 0.05 in an F-test testing for differences among mutation
subgroups (BRCA1 versus BRCA2 versus BRCAx) or for intrinsic subtypes (basal versus luminal A) across all genes. DNA-methylation
data (MeDIP) was compared to gene-expression microarray data (GEM) for all genes or was broken down into LCPs, ICPs, and HCPs
(see Figure S2). For mutation-status groups, the methylation profiles identified 822 significant (FDR-corrected p < 0.05) genes (112,
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Statistical Analysis
DNA-Methylation Profiling with MeDIP Data

Raw data were analyzed with the MAT algorithm, which models

the baseline probe behavior and normalizes the probe t-value

score according to a probe-sequence-based model, taking into

account the MeDIP and input probe values.19 For transcription

start-site analysis, the MAT output t-values were combined for

each start site (obtained from USCS Genome Browser build 36)

5 250 bp around each start site (n ¼ 20527 unique transcripts).

These were subdivided into low-CpG-content promoters (LCPs,

n ¼ 5997), intermediate-CpG-content promoters (ICPs, n ¼
4544), and high-CpG-content promoters (HCPs, n ¼ 9986) as

previously described.16 In brief, HCPs (high-CpG promoters)

contain a CpG ratio above 0.75 and GC content above 55%,

LCPs (low-CpG promoters) contain a CpG ratio below 0.48, and

ICPs (intermediate-CpG promoters) are neither HCPs nor LCPs.

These were further filtered to the genes that were represented by

both MeDIP and gene-expression data sets to 16237 genes

(LCPs, n ¼ 4738; ICPs, n ¼ 3517; HCPs, n ¼ 7982). Support vector

machine learning was performed with the MLInterfaces package.

In brief, the MLearn algorithm uses 5-fold balanced cross valida-

tion, using 80% of the data as a training set to predict the remain-

ing 20% of the data, through five iterations, resulting in a predic-

tion for each tumor in the data set. We used equal numbers of

tumors from each mutation group (n ¼ 8) or intrinsic subtype

(n ¼ 10) for each of the multiple iterations. The predictions pre-

sented are an average of ten permutations of sample selections

of the BRCA1 (8/11) and BRCAx (8/14) tumors compared to the

BRCA2 (8/8) tumors or basal (10/14) and luminal A (10/10)

tumors. Significance of hierarchical clusters was calculated with

the R package ‘‘pvclust,’’ which computes an approximate unbi-

ased p value for clusters by using a multiscale bootstrap resampling

method.20 Pvclust was performed with n ¼ 1000 bootstrap with

all genes or with n ¼ 10,000 with ~1700 most-variable loci,

with similar results. Significant clusters were identified with a

p value < 0.001. Gene set enrichment analysis (GSEA) was per-

formed as previously described via the preranked gene list

approach21. ‘‘Core enrichment’’ describes the leading edge of

the plot representing the genes that are most enriched. Autocor-

relation analysis (acf) was used for determining correlation

between neighboring genes to look for genome-wide evidence

of long-range epigenetic silencing. The frequency of high methyl-

ation in tumors (percentage of tumors with MeDIP t-value > 0.5)

was calculated for each gene, and all genes were ordered by their

chromosome location, such that each gene was next to its nearest

gene irrespective of the distance between them. Only one repre-

sentative transcription start site was used for genes with multiple

start sites.
124, 586 for LCP, ICP, and HCP, respectively) compared to 47 signific
sion profiles. The significant genes in the MeDIP profiles are biased
GEM profiles are not (p ¼ 0.517, chi-square test). For intrinsic subt
corrected p < 0.05) genes (606, 634, 1571 for LCP, ICP, and HCP, re
significant (FDR-corrected p < 0.05) differences.
(B) Heatmap and clustering of 822 significant (FDR-corrected p< 0.05
indicated on the right index—BRCA1 (red, n ¼ 11), BRCA2 (green, n
tumors compared to BRCA2 and BRCAx tumors. BRAC2 and BRCAx
shows the intrinsic subtypes basal (red, n¼ 14), luminal A (blue, n¼ 1
(gray, n ¼ 1).
(C) Bisulphite-sequencing analysis of RASSF1A, SGK1, LRRC55, LHCG
levels are indicated by the red line. Genomic locations for the region
Stars indicate statistically significant differences between groups at p
(D) Validation of methylation differences in RASSF1A, SGK1, LRRC55

The Ameri
Pyrosequencing and Epityper Data

A Wilcoxon signed rank sum test was used to determine statistical

significance between groups for all pyrosequencing or Epityper

DNA-methylation data.
Results

DNA-Methylation Profiles Are Defined

by Mutation Status

In this study, we performed genome-wide DNA-methyla-

tion analysis by using MeDIP on Affymetrix human

promoter tiling arrays (1.0R) that cover over 25,500 indi-

vidual promoters. We assayed 33 familial breast tumors

(11 with BRCA1 mutations, 8 with BRCA2 mutations,

and 14 from non-BRCA1/2 families [BRCAx]) to investigate

the contribution of mutation status to the tumor DNA-

methylation profile. These tumors have also been profiled

with the Illumina gene expression and SNP-CGH array for

copy numbers, thus allowing comparisons across all three

platforms on the same samples.5 Tumor information,

including hormone receptor status, stage, and intrinsic

phenotypic subtype, is provided in Table S1. Validation

of MeDIP enrichment before and after amplification was

performed via qPCR for methylated and unmethylated

controls, and the correlation between MeDIP t-value and

methylation percentage was assessed by pyrosequencing

for four genes: DHX33 (methylated [GeneID: 56919]),

GRHL2 (unmethylated [MIM 608576]), IGF2 DMR0 (im-

printed [MIM 147470]), and RASSF1A (frequently methyl-

ated in breast cancer [MIM 605082]) (Figure S1). These

controls show good correlation between the absolute

methylation percentage and the average MeDIP t-values

provided by the microarray (R2> 0.5, p< 0.0001). Interest-

ingly, 15 of 33 tumors (45%) showed loss of imprinting

(LOI) at IGF2 DMR0 with the use of a previously reported

cutoff of < 35% methylation for sporadic breast cancers.22

Both gene-expression and DNA-methylation profiles

were analyzed to identify the number of genes that could

differentiate the mutation subgroups or the intrinsic sub-

types (Figure 1A). For mutation-status groups, with com-

parison of BRCA1 tumors to BRCA2 and BRCAx tumors,

the methylation profiles identified 822 significant genes

(false discovery rate [FDR]-corrected p < 0.05, F-test),

compared to only 47 significant (FDR-corrected p < 0.05,
ant (FDR-corrected p < 0.05) genes (11,13, 23) in the gene-expres-
toward the HCPs (p ¼ 7.15 3 10�37, chi-square test), whereas the
ypes, the gene-expression profiles identify 2811 significant (FDR-
spectively), whereas the methylation profiles did not identify any

) differences between 33 tumors representing mutation subgroups
¼ 8), and BRCAx (blue, n ¼ 14)—reveal a distinct cluster of BRCA1
tumors do not divide into separate clusters. The index on the left
0), luminal B (green, n¼ 4), HER2 (yellow, n¼ 4), and normal-like

R, and PKD2 in 33 fresh frozen tumors. The median methylation
s presented are from UCSC human March 2006 assembly (hg18).
< 0.05 and p < 0.01 as indicated (Wilcoxon signed-rank sum test).
, LHCGR, and PKD2 in the 47 FFPE breast tumor DNA samples.
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Table 1. Genome-wide Methylation Profiles Predict Mutation Status, and Gene-Expression Profiles Predict Intrinsic Subtype

MeDIP Predicted

Given BRCA1 BRCA2 BRCAx Error (%) Predicted (%) Expected (%) Gain (%)

BRCA1 6.5 0.6 1.2 18.8 81.3 33.3 47.9

BRCA2 0.8 5.5 1.7 31.3 68.8 33.3 35.4

BRCAx 0.8 2.7 5.1 36.3 63.8 33.3 30.4

MeDIP Predicted

Given Basal LumA Error (%) Predicted (%) Expected (%) Gain (%)

Basal 5.8 4.3 42.0 58.0 50.0 8.0

LumA 5 5.1 49.0 51.0 50.0 1.0

GEM Predicted

Given BRCA1 BRCA2 BRCAx Error (%) Predicted (%) Expected (%) Gain (%)

BRCA1 7.1 0.9 0 11.3 88.8 33.3 55.4

BRCA2 0.3 4.5 3.2 43.8 56.3 33.3 22.9

BRCAx 1.9 3.8 2.3 71.3 28.8 33.3 �4.6

GEM Predicted

Given Basal LumA Error (%) Predicted (%) Expected (%) Gain (%)

Basal 10 0 0.0 100.0 50.0 50.0

LumA 0 10 0.0 100.0 50.0 50.0

Support vector machine learning prediction of mutation status or intrinsic subtype based on methylation profiles (MeDIP) or gene-expression profiles (GEM). Anal-
ysis of MeDIP data was performed on a random selection of 24 tumors (eight from each group), and the numbers presented are an average of ten permutations of
sample selections, such that all tumors were used in the analysis. These numbers do not always add up to 8, as a result of the averaging across the ten permu-
tations. GEM analysis was performed on a random selection of 20 tumors (ten from each group), and the numbers presented are an average of ten permutations of
sample selections, such that all tumors were used in the analysis. Analysis could be performed only on the two largest groups (basal and luminal A). Gain
percentage represents the improvement of the prediction over random chance (percentage expected).
F-test) genes identified in the gene-expression profiles.

When these data were broken down to promoter classes

on the basis of the CpG ratio (defined previously16 and

in Material and Methods; Figure S2), we observed that

high-density CpG island promoters contribute most to

the differences among mutation groups (p ¼ 7.15 3

10�37, chi-square test), whereas gene-expression profiles,

on the other hand (with only 47 significant genes), were

not biased (p ¼ 0.517, chi-square test). In contrast to the

mutation groups, analysis of intrinsic subtypes identified

2811 genes that were significantly different (FDR-corrected

p < 0.05, F-test) in the gene-expression profiles between

basal and luminal A breast tumors, but the MeDIP methyl-

ation profiles did not identify any significant (FDR-cor-

rected p < 0.05) differences between basal or luminal

breast tumors.

We further validated this finding by using a support

vector machine (svm) classification algorithm to predict

the mutation status or intrinsic subtype on the basis of

either the gene-expression profiles or the MeDIP methyla-

tion profiles (Table 1). This algorithm contains a balanced

5-fold cross-validation system, which uses 80% of the data

as a training set to predict the remaining 20% of the data,

through five iterations, resulting in a prediction for each

tumor in the data set. As expected, gene-expression data
424 The American Journal of Human Genetics 86, 420–433, March 1
correctly predicts intrinsic subtype with 100% accuracy,

and it predicts BRCA1 mutation with 90% accuracy,

mainly because of the fact that BRCA1 tumors are also

predominantly basal tumors. The GEM also predicts

BRCA2 tumors correctly 55% of the time. However, the

gene-expression profiles fail to predict BRCAx tumors.

This is consistent with previous studies.23 Conversely,

the MeDIP methylation profiles fail to predict the intrinsic

subtypes, but prediction of mutation classes is improved

by consideration of MeDIP methylation profiles. Methyla-

tion pattern predicted BRCA1, BRCA2, and BRCAx tumors

with estimated error rates of 19%, 31%, and 36%, respec-

tively, which is more accurate than the prediction error

rates from gene-expression profiles (11%, 44%, 71% for

BRCA1, BRCA2, and BRCAx, respectively). The most inter-

esting improvement is the marked increase in prediction of

BRCAx tumors: from 71% error with gene-expression

profiling (more than would be expected by chance; 66%

error), down to 36% with methylation profiling. This can

be also represented as the percentage gain that is the

improvement of the prediction over random chance

(percentage expected), which shows a 30% gain for

MeDIP prediction of BRCAx in comparison to the 4.5%

loss of prediction over random chance for gene-expression

predictions.
2, 2010



Hierarchical clustering of promoter methylation pat-

terns of the 822 genes that defined the mutation groups

shows a distinct group of BRCA1 tumors and a less-defined

cluster of BRCA2 and BRCAx tumors (Figure 1B). We per-

formed pyrosequencing-based and MALDI-TOF-based

(Epityper) methylation analysis for eight of these genes,

including one frequently hypermethylated gene, RASSF1A,

and seven additional genes (SGK1 [MIM 602958], LRRC55

[GeneID: 219527], LHCGR [MIM 152790], PKD2 [MIM

173910], GRAMD1C [GeneID: 54762], DA103059 [hypo-

thetical], and HTR6 [MIM 601109]) in the 33 frozen tumor

samples from the test set. These genes were picked from

the list of 822 genes that defined the mutation groups.

Five of these eight genes (RASSF1A, SGK1, LRRC55, LHCGR,

and PKD2) showed statistically significant differences

between mutation groups in the original test set (n ¼ 33)

(Figure 1C) and, even more so, in the validation set of

FFPE tumors (n ¼ 47) (Figure 1D). The only genes that

were not validated in the FFPE tumor panel were

GRAMD1C, DA103059, and HTR6 (Figure S3). The LHCGR

gene was analyzed by both pyrosequencing and Epityper,

with good correlation over the overlapping sequence

(r2 ¼ 0.689, p < 0.0001).
DNA-Methylation Profiles Define BRCAx Subgroups

Given that BRCA1 breast tumors showed a specific methyl-

ation profile, we examined the methylation patterns in

BRCAx tumors to determine whether subgroups could be

delineated that might reflect germline mutations in the

same genes or pathways. Using unsupervised hierarchical

clustering of the 14 BRCAx tumor samples across all

16237 genes with a multiscale bootstrap resampling, we

identified a subgroup of five tumors that significantly clus-

tered together (p < 0.0001) (Figures 2A and 2B). These five

tumors included two basal tumors, two luminal A tumors,

and one luminal B tumor, suggesting that this cluster is

not defined by the intrinsic subtypes. We identified 156

genes that significantly differentiate this group, designated

BRCAx-a, from the remaining nine tumors, which are

designated BRCAx-b (Table S3). We validated three of these

genes, HTR6, LHCGR, and GEMIN8 (GeneID: 54960), in

both tumor panels (Figures 2C and 2D). In the fresh frozen

tumor panel (n ¼ 33), we observed a significant increased

methylation in the BRCAx-b group (median methylation

of 47.9%) as compared to the BRCAx-a group (12.3%)

(p ¼ 0.016, t test) in the promoter CpG island of the

LHCGR gene. In the HTR6 gene, we observed regions of

significantly higher methylation in the BRCAx-b group

(57.8%) as compared to the BRCAx-a group (34.5%). In

GEMIN8, we observed significantly increased methylation

in the BRCAx-a group (15.9%) as compared to the

BRCAx-b group (6.5%). We were unable to clearly define

two subgroups in the FFPE tumor panel (n ¼ 47) on the

basis of these three genes alone; however, we did observe

bimodal distribution of methylation in each of these genes

potentially indicative of different groups (Figure 2D).
The Ameri
Validation of Previous Findings in Sporadic

Breast Cancer

Until recently, the majority of DNA-methylation studies

have identified individual genes or small sets of candidate

genes that are hypermethylated in breast cancers with

varying frequencies. With our genome-wide data, we

were able to validate previous findings such as hyperme-

thylation of various candidate genes in breast cancer and

regions of long-range epigenetic silencing (LRES) and to

perform fine mapping of regions of hypermethylation.

Using gene set enrichment analysis, we investigated

a list of genes that were previously identified as hyperme-

thylated in breast cancer in greater than 20% of tumors

and that were also represented on the microarray (n ¼ 72

(Figures 3A and 3B, Table S4). The reported hypermethy-

lated genes are indeed enriched in the MeDIP microarray

analysis (p ¼ 0.042), and we identified 38 genes in the

core enrichment that are most frequently methylated in

the familial breast cancers (Table S4), with the strongest

enrichment in BRCA1 tumors (p ¼ 0.044). We identified

the genes, including HRAS (MIM 190020), CXCL1 (MIM

155730), GREM1 (MIM 603054), CDCP1 (MIM 611735),

and RB1 (MIM 180200), from this list that significantly dif-

ferentiate the mutation subgroups (Figures 3C and 3D),

and we have presented detailed Epityper-based validation

of the Gremlin 1 gene (GREM1) (Figure 3E). In this gene,

we observed higher methylation in the BRCA2 (median

methylation 30.8%) and BRCAx (25.8%) tumors as com-

pared to the BRCA1 tumors (19.9%).

LRES has been reported previously in sporadic breast

cancer and in colorectal cancer (MIM 114500) and suggests

that there may be a relationship between frequently meth-

ylated genes in gene family clusters or on nearby chromo-

somal locations.9,11 We used an autocorrelation analysis to

look for genome-wide evidence of LRES in familial breast

tumors. We show that there are over 1500 genes that are

frequently methylated (MeDIP t-value > 0.5) in more

than 30% of tumors (n ¼ 33; Figure 4A) and that there is

a statistically significant autocorrelation between any

gene and up to three of its nearest neighbors (Figure 4B).

The high-density array allows for fine mapping of DNA-

methylation differences with the use of a probe-wise anal-

ysis, and we have used this approach to validate ESR1 (ERa)

methylation. Previous studies have shown that five indi-

vidual CpG dinucleotides in the ESR1 promoter were

more methylated in BRCA1 tumors as compared to ER-

negative tumors and have suggested that this may be an

important factor in transcriptional repression of this

gene in BRCA1-linked breast cancers.24 We have mapped

the critical region of hypermethylation in BRCA1-linked

ER-negative tumors to a 147 bp region (region 2) of the

CpG island containing 20 CpG sites (chr6:152171256–

152171402; NCBI build 36.1) (Figure S4). We further vali-

dated this in our samples by using pyrosequencing,

showing median methylation of 10.6% in BRCA1 ER-nega-

tive tumors, as compared to 7.5% in the other ER-negative

tumors (p ¼ 0.0056).
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Figure 2. Methylation Profiling Reveals a Distinct Subgroup of BRCAx Tumors
(A) Unsupervised heirarchical clustering of the 14 BRCAx tumor samples across all 16237 genes using multiscale bootstrap resampling to
generate p values for clusters (pvclust). Clusters with p< 0.0001 are boxed in red. Samples are labeled with their intrinsic subtype to show
that the groupings are not related to the tumor phenotype.
(B) Heatmap and clustering of 156 significant (p.fdr < 0.05) differences between the BRCAx-a subgroup (dark blue) compared to the re-
maining tumors (pale blue, termed BRCAx-b) shows that the majority of differences (136/156) are increases in methylation in BRCAx-b.
The full list of genes is presented in Table S2.
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Integration of Methylation, Copy-Number,

and Gene-Expression Data

This data set represents, to our knowledge, the first fully

integrated analysis of familial breast tumors with genome-

wide DNA-methylation, copy-number, and gene-expres-

sion data. For each tumor, every gene was scored as over-

lapping with regions of homozygous deletion (HD), loss

of heterozygosity (LOH), copy-neutral LOH, copy gains

(GAIN), or no change (diploid) in that tumor. For each

gene, the median MeDIP t-value was then calculated

from tumors in each of the five copy-number groups (if

present) with the use of the diploid tumors as a reference

level for that gene (Figure 5). Hierarchical clustering iden-

tified two groups of genes, the first containing both LOH

and high methylation in tumors and the second contain-

ing copy-number gains and high methylation in tumors

(Figure 5A). This was observed in 607/4921 (12.3%) genes

with LOH and in 1032/9070 (11.4%) genes with copy-

number gains. In contrast, the methylation of genes in

copy-neutral LOH regions was higher than in diploid

tumors for only 129/15213 (0.8%) genes. This is statisti-

cally supported by chi-squared analysis (c2 ¼ 407.2, p <

2.2 3 10�6) (Table S5). Similar results were obtained

when tumors were separated into mutation groups (Fig-

ure S5). Furthermore, the median methylation (t-values)

for all genes with LOH was 0.72 (range 0.5–4.0) and copy

gain was 0.70 (range 0.5–6.3), both of which were signifi-

cantly higher than that of copy-neutral LOH genes, which

had a median of 0.60 (range 0.5–1.3) (Figure 5B). Gene

expression of these groups shows that genes within regions

of LOH and high methylation more often have decreased

expression (p ¼ 0.00022) and that genes within regions

of copy gain often maintain higher expression (p ¼ 1.7 3

10�5), albeit a very modest median increase: 0.08 (log2 D

gene expression) (Figure 5C).
Discussion

Hypermethylation of promoter CpG islands occurs

frequently in numerous genes in almost all human

cancers.25 Genome-wide hypomethylation is also fre-

quently observed in tumor cells compared to normal

tissue.25 Which, if any, of these frequent epigenetic

changes are early ‘‘driving’’ epimutations or late-event

‘‘passenger’’ epimutations is not clear, nor is the mecha-

nism of how these alterations occur known. In this study,

we have shown that different germline mutations can lead

to very different epigenetic profiles in breast tumors. Meth-

ylation markers might therefore be useful as an additional

tool for predicting mutation status of tumors, prior to
(C) Bisulphite sequencing validation of GEMIN8, HTR6 and LHCG
median methylation levels are indicated by the red line. Genomic
Assembly (hg18). Stars indicate statistically significant differences bet
rank sum test.
(D) Validation of methylation differences in GEMIN8, HTR6 and LH
samples. Distribution histograms are presented below to show the b

The Ameri
confirmation by sequence analysis, and for distinguishing

pathogenic from neutral variants in BRCA1.26,27

An epigenetic role for BRCA1 has been proposed because

of its binding to HDAC1 (MIM 601241) and HDAC2 (MIM

601241) and chromatin-remodelling complexes.28,29

However, a direct role for BRCA1 in DNA methylation

has not yet been investigated. There are conflicting reports

about the level of methylation in BRCA1-mutated tumors

compared to sporadic breast tumors.13,14 We showed

that the BRCA1 tumors have the most distinct genome-

wide DNA-methylation profiles with the highest svml

predictions and the most significant clustering. In the

genes that we have validated in both sets of tumors (e.g.,

RASSF1A, SGK1, HTR6, LHCGR, PKD2, and others), we

observed lower methylation levels in the BRCA1 breast

tumors compared to the BRCA2 and BRCAx tumors. Low

levels of methylation have been observed in other genes

in BRCA1 tumors, best exemplified by HIN1 (SCGB3A1

[MIM 606500]).13,14,30,31 Together, these data are consis-

tent with a role for BRCA1, direct or indirect, in de novo

methylation of these genes or in the spreading and main-

tenance of methylation marks, a function that is likely to

be absent in BRCA1-mutated tumors. Therefore, further

investigation of the role of BRCA1 in DNA methylation

is warranted. Recently, DNA demethylation has been

shown to be cyclical in the estrogen-responsive promoters

dependant on deamination and glycosylation and on base-

excision-repair pathways, suggesting a rapidly changing

DNA-methylation state.32,33 There is now compelling

evidence that DNA demethylation involves DNA repair

via a 5-meC deaminase, activation-induced deaminase

(AICDA [MIM 605257]), and a G:T mismatch-specific

thymine glycosylase, Mbd4 (MIM 603574), and is pro-

moted by GADD45 (MIM 126335) proteins through phys-

ical interactions with both AICDA and Mbd4.34,35 These

data suggest that the enzymatic reaction maintaining the

DNA methylation is in a fine balance that can be shifted

rapidly and that fully functional DNA repair pathways

are required. Interestingly, although BRCA1 transactivates

GADD45 promoter in response to DNA damage, it has

been reported to repress GADD45 transcription in unper-

turbed cells through interaction with CtIP (RBBP8 [MIM

604124]), a corepressor.36 Thus, it is possible that increased

GADD45 expression in the absence of BRCA1 may account

for hypomethylation seen in BRCA1 tumors compared to

other familial tumors.

Gene-expression profiling of sporadic and familial breast

tumors can categorize them into defined pathological

and clinically different intrinsic subtypes, including basal

tumors (often triple-negative, BRCA1-mutated tumors and

poorer prognosis), HER2-amplified tumors, and luminal
R comparing BRCAx-a subgroup to the BRCAx-b subgroup. The
locations for the regions presented are from Human Mar. 2006

ween groups at p< 0.05 and p< 0.01 as indicated, wilcoxon signed

CGR in 47 formalin fixed paraffin embedded breast tumor DNA
imodal distribution of methylation for these genes.
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Figure 3. Validation of Previously Identified Hypermethylated Genes in Breast Cancer
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interval, blue dotted line) between any gene and its next three
neighboring genes, showing evidence for LRES in clusters up to
four genes.
tumors (hormone-receptor positive and better prog-

nosis).3,5 In this study, we have attempted to use the

DNA-methylation profiles to recapitulate the clustering

into these intrinsic subtypes. However, we observed no

significantly different genes between the basal and luminal

groupings; thus, it is not surprising that the svml predic-
(B) GSEA of all breast tumors (black line in Figure 4A) showing each of
ment (p ¼ 0.042) of the hypermethylated genes across the whole data
among the frequently methylated genes (core hypermethylated gen
(C) t test for intergroup analyses comparing BRCA1 to BRCA2, BRCA2
above 1.3 (p ¼ 0.05) indicate significant differences in methylation
(D) Representative examples of genes that differentiate tumors on the
whisker plots representing median (center line), interquartile range (b
are represented as points.
(E) Epityper validation of GREM1 comparing 33 familial breast tumo
(green, n ¼ 8), and BRCAx (blue, n ¼ 14). Presented is the mean m
(5 SEM). The line between sites indicates contiguous CpG sites. Gen
March 2006 assembly (hg18).

The Ameri
tions using the methylation profiles were unable to iden-

tify whether the tumors were basal or luminal breast

tumors. We do not discount the possibility that larger

numbers of tumors may identify statistically significant

differences between intrinsic subtypes. Given that BRCA1

tumors were accurately predicted and that almost all

BRCA1 tumors are basal tumors, one might assume that

the methylation profiling should have predicted the basal

tumors. However, there were an additional four basal

tumors that were BRCAx tumors, and these tumors had

methylation profiles very different from those of the

BRCA1 tumors, which accounts for the poor prediction

of basal tumors. These data suggest that the differences

in gene expression that define these intrinsic subgroups

are not regulated by differential DNA methylation.

We have recently shown by gene-expression profiling

that, like sporadic tumors, BRCAx tumors are heteroge-

neous and manifest all five intrinsic subtypes.5 However,

we have found that DNA-methylation profiling predicted

a higher number of BRCAx tumors, with 64% accuracy,

than did gene-expression data (29% accuracy). Further-

more, when we performed unsupervised hierarchical clus-

tering on these samples, we found a subset of tumors that

clustered together in a highly significant branch of the

cluster (p < 0.0001). These five tumors included two basal,

two luminal, and one HER2 tumor, indicating that these

groupings are not reliant on the intrinsic subtypes. Given

that the BRCA1 tumors, all of which harbor mutations in

the same gene, have a distinctive methylation profile, we

hypothesize that this subgroup of BRCAx tumors with

similar profiles may harbor mutations in the same gene

or same pathway. The methylation of genes such as

HTR6, LHCGR, and GEMIN8, in which we have validated

the differences in these groups, may be used in future

studies to subdivide this heterogeneous tumor group

into a subclass that may be more homogenous and

may increase the sensitivity of linkage analysis or high-

throughput-sequencing mutation screening for the identi-

fication of breast cancer susceptibility genes. However, we

note that only 14 BRCAx tumors were profiled in this

study. Although validation in the 47 FFPE tumors showed

bimodal distribution of methylation for these genes, the

existence of BRCAx subtypes with different methylation

profiles needs to be further validated with a larger panel

of genes in more BRCAx tumors, including sets from

within the same family, in order to determine whether
the 72 genes represented by black bars. This analysis shows enrich-
set, with a core set of 38 genes significantly enriched (p < 0.0001)

es; Table S3).
to BRCAx, or BRCAx to BRCA1, presented as�log(10) p values. Bars
among the groups for 28 of these genes.

basis of mutation status. MeDIP t-values are presented as box and
ox), and 95th percentiles (whisker), and samples outside this range

rs representing mutation subgroups BRCA1 (red, n ¼ 11), BRCA2
ethylation at each CpG site (or CpG cluster) across the amplicon
omic location for the region presented is from the UCSC human
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more often have decreased expression and that copy-gain tumors often maintain higher expression.
there might be a genetic basis to such methylation

subtypes.

The genome-wide nature of our methylation analysis

has allowed us to investigate the methylation of any

gene with high probe-level resolution (~35 bp resolution).

We used this resolution to validate the fine mapping of

increased methylation changes in the first intron of the

ESR1 gene in BRCA1 tumors compared to non-BRCA1

tumors.24 This has been proposed as one specific mecha-

nism by which BRCA1 tumors alter ESR1 expression,

thereby altering the response to antiestrogen therapies,

and may account for a difference between BRCA1 and

non-BRCA1 basal tumors.24,37 BRCA1 is also recruited to

the ESR1 promoter by Oct1, where it is required for ESR1

expression.38 It is not yet known whether this binding of
430 The American Journal of Human Genetics 86, 420–433, March 1
BRCA1 to the promoter is responsible for the change in

CpG island methylation.

We performed validation of variable methylation levels

in numerous genes, including RASSF1A, SGK1, PKD2,

HTR6, LHCGR, and GEMIN8. We hypothesize that differen-

tial methylation of these genes may contribute to phe-

notypic differences among these mutation classes. For

example, we observed increased methylation of the lutei-

nizing hormone/choriogonadotropin receptor (LHCGR)

in BRCA2 and BRCAx compared to BRCA1 tumors. This

gene is regulated by DNA methylation and histone modifi-

cations, and its mRNA is undetectable in up to 65% of

unselected breast cancers.39,40 Furthermore, the expression

of LHCGR is increased in more invasive breast tumors;

thus, the decreased methylation of LHCGR that we
2, 2010



observed in BRCA1 tumors may contribute to their

increased aggressiveness as compared to other tumors.41,42

PKD2 is a membrane-bound protein involved in tubulo-

genesis.43 Increased methylation of PKD2 in BRCA2-

related breast tumors may, therefore, promote the

increased tubular or tubulo-lobular morphology observed

in BRCA2 tumors compared to other tumors.44 The serum-

and glucocorticoid-inducible kinase 1 (SGK1) is a serine/

threonine protein kinase that is involved in cellular stress

and may have an important role in breast tumor aggres-

siveness.45 Furthermore, it is induced in a p53-dependent

manner after DNA damage and is activated by the mTOR

pathway.46,47 Our finding that SGK1 is less methylated in

BRCA1-mutated tumors is consistent with the increased

activity of the mTOR signaling pathway observed in

basal-like breast cancers.42,48 Further investigation of the

role of methylation of these genes in breast carcinogenesis

is warranted.

We have generated, for the first time, a complete data set

of DNA-methylation, gene-expression, and copy-number

variation on 33 familial breast tumors covering 16237

gene transcripts (freely available resource; GEO accession

no. GSE17125). We did not observe a strong genome-

wide correlation between gene expression and methyla-

tion. This is not surprising, given that the majority of genes

have unmethylated promoters despite differential gene

expression regulated by transcription factors and other

regulatory mechanisms. However, we could identify ~800

genes in which gene expression was significantly inversely

correlated with DNA methylation (Table S5). We did

observe a strong relationship between methylation and

copy number, a significant number of genes showing

both LOH and increased methylation, which suggests

that these genes conform to the Knudson two-hit hypoth-

esis for tumor-suppressor genes.49 In addition, we observed

a large number of genes that show copy-number gain and

increased methylation, which we hypothesize may be a

mechanism for dosage compensation to reduce the level

of expression of amplified genes.

In summary, we have shown that methylation profiles for

familial breast cancers are defined by the mutation status

and are distinct from the intrinsic subtypes. This finding

requires independent confirmation in a larger panel of

familial tumors. Finally, we have provided a novel resource

integrating genomic analysis of DNA-methylation, gene-

expression, and copy-number changes that will be useful

for future genomic research in familial breast cancers.
Supplemental Data

Supplemental Data include five figures and six tables and can be

found with this article online at http://www.ajhg.org.
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